Library ImpSimpl
This file is a slight modification of ImpSimpl.v from Adam
Chilipala's FRAP: <http://adam.chlipala.net/frap/>
We use Robbert's prelude from <http://robbertkrebbers.nl/research/ch2o/>
Require Import stringmap natmap.
Here's some appropriate syntax for expressions (side-effect-free) of a simple imperative language with a mutable memory.
Inductive exp :=
| Const (n : nat)
| Var (x : string)
| Plus (e1 e2 : exp)
| Minus (e1 e2 : exp)
| Mult (e1 e2 : exp).
| Const (n : nat)
| Var (x : string)
| Plus (e1 e2 : exp)
| Minus (e1 e2 : exp)
| Mult (e1 e2 : exp).
Those were the expressions of numeric type. Here are the Boolean expressions.
Inductive bexp :=
| Equal (e1 e2 : exp)
| Less (e1 e2 : exp).
Definition var := string.
Definition valuation := stringmap nat.
Inductive cmd :=
| Skip
| Assign (x : var) (e : exp)
| Seq (c1 c2 : cmd)
| If_ (be : bexp) (then_ else_ : cmd)
| While_ (be : bexp) (body : cmd).
| Equal (e1 e2 : exp)
| Less (e1 e2 : exp).
Definition var := string.
Definition valuation := stringmap nat.
Inductive cmd :=
| Skip
| Assign (x : var) (e : exp)
| Seq (c1 c2 : cmd)
| If_ (be : bexp) (then_ else_ : cmd)
| While_ (be : bexp) (body : cmd).
Shorthand notation for looking up in a finite map, returning zero if the key is not found
Start of expression semantics: meaning of expressions
Fixpoint eval (e : exp) (v : valuation) : nat :=
match e with
| Const n => n
| Var x => v $! x
| Plus e1 e2 => eval e1 v + eval e2 v
| Minus e1 e2 => eval e1 v - eval e2 v
| Mult e1 e2 => eval e1 v * eval e2 v
end.
match e with
| Const n => n
| Var x => v $! x
| Plus e1 e2 => eval e1 v + eval e2 v
| Minus e1 e2 => eval e1 v - eval e2 v
| Mult e1 e2 => eval e1 v * eval e2 v
end.
Meaning of Boolean expressions
Fixpoint beval (b : bexp) (v : valuation) : bool :=
match b with
| Equal e1 e2 => beq_nat (eval e1 v) (eval e2 v)
| Less e1 e2 => negb (eval e2 v <=? eval e1 v)
end.
Inductive exec : valuation -> cmd -> valuation -> Prop :=
| ExSkip : forall v,
exec v Skip v
| ExAssign : forall v x e,
exec v (Assign x e) (<[x := eval e v]>v)
| ExSeq : forall v1 c1 v2 c2 v3,
exec v1 c1 v2
-> exec v2 c2 v3
-> exec v1 (Seq c1 c2) v3
| ExIfTrue : forall v1 b c1 c2 v2,
beval b v1 = true
-> exec v1 c1 v2
-> exec v1 (If_ b c1 c2) v2
| ExIfFalse : forall v1 b c1 c2 v2,
beval b v1 = false
-> exec v1 c2 v2
-> exec v1 (If_ b c1 c2) v2
| ExWhileFalse : forall v b c,
beval b v = false
-> exec v (While_ b c) v
| ExWhileTrue : forall v1 b c v2 v3,
beval b v1 = true
-> exec v1 c v2
-> exec v2 (While_ b c) v3
-> exec v1 (While_ b c) v3.
Open Scope string_scope.
Coercion Const : nat >-> exp.
Coercion Var : string >-> exp.
Infix "+" := Plus : cmd_scope.
Infix "-" := Minus : cmd_scope.
Infix "*" := Mult : cmd_scope.
Infix "=" := Equal : cmd_scope.
Infix "<" := Less : cmd_scope.
Definition set (dst src : exp) : cmd :=
match dst with
| Var dst' => Assign dst' src
| _ => Assign "Bad LHS" 0
end.
Infix "<-" := set (no associativity, at level 70) : cmd_scope.
Infix ";;" := Seq (right associativity, at level 75) : cmd_scope.
Notation "'when' b 'then' then_ 'else' else_ 'done'" := (If_ b then_ else_) (at level 75, b at level 0).
Notation "{{ I }} 'while' b 'loop' body 'done'" := (While_ b body) (at level 75).
Delimit Scope cmd_scope with cmd.
Infix "+" := plus : reset_scope.
Infix "-" := minus : reset_scope.
Infix "*" := mult : reset_scope.
Infix "=" := eq : reset_scope.
Infix "<" := lt : reset_scope.
Delimit Scope reset_scope with reset.
Open Scope reset_scope.
match b with
| Equal e1 e2 => beq_nat (eval e1 v) (eval e2 v)
| Less e1 e2 => negb (eval e2 v <=? eval e1 v)
end.
Inductive exec : valuation -> cmd -> valuation -> Prop :=
| ExSkip : forall v,
exec v Skip v
| ExAssign : forall v x e,
exec v (Assign x e) (<[x := eval e v]>v)
| ExSeq : forall v1 c1 v2 c2 v3,
exec v1 c1 v2
-> exec v2 c2 v3
-> exec v1 (Seq c1 c2) v3
| ExIfTrue : forall v1 b c1 c2 v2,
beval b v1 = true
-> exec v1 c1 v2
-> exec v1 (If_ b c1 c2) v2
| ExIfFalse : forall v1 b c1 c2 v2,
beval b v1 = false
-> exec v1 c2 v2
-> exec v1 (If_ b c1 c2) v2
| ExWhileFalse : forall v b c,
beval b v = false
-> exec v (While_ b c) v
| ExWhileTrue : forall v1 b c v2 v3,
beval b v1 = true
-> exec v1 c v2
-> exec v2 (While_ b c) v3
-> exec v1 (While_ b c) v3.
Open Scope string_scope.
Coercion Const : nat >-> exp.
Coercion Var : string >-> exp.
Infix "+" := Plus : cmd_scope.
Infix "-" := Minus : cmd_scope.
Infix "*" := Mult : cmd_scope.
Infix "=" := Equal : cmd_scope.
Infix "<" := Less : cmd_scope.
Definition set (dst src : exp) : cmd :=
match dst with
| Var dst' => Assign dst' src
| _ => Assign "Bad LHS" 0
end.
Infix "<-" := set (no associativity, at level 70) : cmd_scope.
Infix ";;" := Seq (right associativity, at level 75) : cmd_scope.
Notation "'when' b 'then' then_ 'else' else_ 'done'" := (If_ b then_ else_) (at level 75, b at level 0).
Notation "{{ I }} 'while' b 'loop' body 'done'" := (While_ b body) (at level 75).
Delimit Scope cmd_scope with cmd.
Infix "+" := plus : reset_scope.
Infix "-" := minus : reset_scope.
Infix "*" := mult : reset_scope.
Infix "=" := eq : reset_scope.
Infix "<" := lt : reset_scope.
Delimit Scope reset_scope with reset.
Open Scope reset_scope.