Ka-Hoo Lam,
Ioan Gabriel Bucur,
Pim van Oirschot,
Frank de Graaf,
Eva Strijbis,
Bernard Uitdehaag,
Tom Heskes,
Joep Killestein,
and Vincent de Groot.
Personalized monitoring of ambulatory function with a smartphone two-minute walk test in multiple sclerosis.
Multiple Sclerosis Journal,
29:606-614,
2023.
Max Oosterwegel,
Jesse Krijthe,
Melina den Brok,
Lieneke van den Heuvel,
Edo Richard,
Tom Heskes,
Bastiaan Bloem,
and Luc Evers.
The effect of cardiovascular risk on disease progression in de novo Parkinson's disease patients: An observational analysis.
Frontiers in Neurology,
14,
2023.
Amir Talebi,
Jan Ypinga,
Nienke De Vries,
Jorik Nonnekes,
Marten Munneke,
Bas Bloem,
Tom Heskes,
Yoav Ben-Shlomo,
and Sirwan Darweesh.
Specialized versus generic allied health therapy and the risk of Parkinson's disease complications.
Movement Disorders,
38(2):223-231,
2023.
Feri Wijayanto,
Ioan Gabriel Bucur,
Perry Groot,
and Tom Heskes.
autoRasch: An R Package to Do Semi-Automated Rasch Analysis.
Applied Psychological Measurement,
47(1):83-85,
2023.
Lisandro Jimenez-Roa,
Tom Heskes,
Tiedo Tinga,
and Mariëlle Stoelinga.
Automatic inference of fault tree models via multi-objective evolutionary algorithms.
IEEE Transactions on Dependable and Secure Computing,
2022.
Alex Kolmus,
Grégory Baltus,
Justin Janquart,
Twan van Laarhoven,
Sarah Caudill,
and Tom Heskes.
Fast sky localization of gravitational waves using deep learning seeded importance sampling.
Physical Review D,
106:023032,
2022.
Ka-Hoo Lam,
Ioan Gabriel Bucur,
Pim van Oirschot,
Frank de Graaf,
Hans Weda,
Eva Strijbis,
Bernard Uitdehaag,
Tom Heskes,
Joep Killestein,
and Vincent de Groot.
Towards individualized monitoring of cognition in multiple sclerosis in the digital era: a one-year cohort study.
Multiple Sclerosis and Related Disorders,
60:103692,
2022.
Konrad Mielke,
Aafke Schipper,
Tom Heskes,
Mark Huijbregts,
Michiel Zijp,
Leo Posthuma,
and Tom Claassen.
Discovering ecological relationships in flowing freshwater ecosystems.
Frontiers in Ecology and Evolution,
9,
2022.
Karlien Mul,
Feri Wijayanto,
Tom Loonen,
Perry Groot,
Sanne Vincenten,
Simone Knuijt,
Jan Groothuis,
Thomas Maal,
Tom Heskes,
Nicol Voermans,
and Baziel van Engelen.
Development and validation of the patient-reported Facial Function Scale for facioscapulohumeral muscular dystrophy.
Disability and Rehabilitation,
45:1530-1535,
2022.
Martijn Schilpzand,
Chase Neff,
Jeroen van Dillen,
Bram van Ginneken,
Tom Heskes,
Chris de Korte,
and Thomas van den Heuvel.
Automatic placenta localization from ultrasound imaging in a resource-limited setting using a predefined ultrasound acquisition protocol and deep learning.
Ultrasound in Medicine and Biology,
48:663-674,
2022.
Yuliya Shapovalova,
Tom Heskes,
and Tjeerd Dijkstra.
Non-parametric synergy modeling of chemical compounds with Gaussian processes.
BMC Bioinformatics,
23:14,
2022.
Feri Wijayanto,
Karlien Mul,
Perry Groot,
Baziel van Engelen,
and Tom Heskes.
Semi-automated Rasch analysis with differential item functioning.
Behavior Research Methods,
2022.
Christiaan de Leeuw,
Jeanne Savage,
Ioan Gabriel Bucur,
Tom Heskes,
and Danielle Posthuma.
Understanding the assumptions underlying Mendelian Randomization.
European Journal of Human Genetics,
30:653–660,
2022.
Fabiola Müller,
Feri Wijayanto,
Harriët Abrahams,
Marieke Gielissen,
Hetty Prinsen,
Annemarie Braamse,
Hanneke van Laarhoven,
Perry Groot,
Tom Heskes,
and Hans Knoop.
Potential mechanisms of the fatigue-reducing effect of cognitive-behavioral therapy in cancer survivors: Three randomized controlled trials.
Psycho-Oncology,
30(9):1476-1484,
2021.
Adriaan Penson,
Sylvia van Deuren,
Ewald Bronkhorst,
Ellen Keizer,
Tom Heskes,
Marieke Coenen,
Judith Rosmalen,
Wim Tissing,
Helena van der Pal,
Andrica de Vries,
Marry van den Heuvel-Eibrink,
Sebastian Neggers,
Birgitta Versluys,
Marloes Louwerens,
Margriet van der Heiden-van der Loo,
Saskia Pluijm,
Martha Grootenhuis,
Nicole Blijlevens,
Leontien Kremer,
Eline van Dulmen-den Broeder,
Hans Knoop,
and Jacqueline Loonen.
Methodology of the DCCSS later fatigue study: A model to investigate chronic fatigue in long-term survivors of childhood cancer.
BMC Medical Research Methodology,
21(1):1-12,
2021.
Feri Wijayanto,
Ioan Gabriel Bucur,
Karlien Mul,
Perry Groot,
Baziel van Engelen,
and Tom Heskes.
Semi-automated Rasch analysis using in-plus-out-of-questionnaire log likelihood.
British Journal of Mathematical and Statistical Psychology,
74:313-339,
2021.
Errol Zalmijn,
Tom Heskes,
and Tom Claassen.
Spectral ranking of causal influence in complex systems.
Entropy,
23:369,
2021.
Lieneke van den Heuvel,
Luc Evers,
Marjan Meinders,
Bart Post,
Tom Heskes,
Bas Bloem,
and Jesse Krijtje.
Estimating the effect of early treatment initiation in Parkinson's disease using observational data.
Movement Disorders,
36:407-414,
2021.
Luc Evers,
Yordan Raykov,
Jesse Krijthe,
Ana Lìgia Silva de Lima,
Reham Badawy,
Kasper Claes,
Tom Heskes,
Max Little,
Marjan Meinders,
and Bas Bloem.
Real-life gait performance as a digital biomarker for motor fluctuations: the Parkinson@Home validation study.
Journal of Medical Internet Research,
22:e19068,
2020.
Simone Lederer,
Tom Heskes,
Kees Albers,
and Simon van Heeringen.
Investigating the effect of dependence between conditions with Bayesian linear mixed models for motif activity analysis.
PLOS ONE,
15(5):e0231824,
2020.
Konrad Mielke,
Tom Claassen,
Michela Busana,
Tom Heskes,
Mark Huijbregts,
Kees Koffijberg,
and Aafke Schipper.
Disentangling drivers of spatial autocorrelation in species distribution models.
Ecography,
43:1741-1751,
2020.
Yordan Raykov,
Luc Evers,
Bas Bloem,
Tom Heskes,
Marjan Meinders,
Kasper Claes,
and Max Little.
Probabilistic modelling of gait for robust passive monitoring in daily life.
IEEE Journal of Biomedical and Health Informatics,
25(6):2293-2304,
2020.
Gido Schoenmacker,
Annabeth Groenman,
Elena Sokolova,
Jaap Oosterlaan,
Nanda Rommelse,
Herbert Roeyers,
Bob Oades,
Stephen Faraone,
Barbara Franke,
Tom Heskes,
Alejandro Arias Vasquez,
Tom Claassen,
and Jan Buitelaar.
Role of conduct problems in the relation between Attention-Deficit Hyperactivity disorder, substance use, and gaming.
European Neuropsychopharmacology,
30:102-113,
2020.
Gido Schoenmacker,
Katre Sakala,
Barbara Franke,
Jan Buitelaar,
Toomas Veidebaum,
Jaanus Harro,
Tom Heskes,
Tom Claassen,
and Alejandro Arias Vasquez.
Identification and validation of risk factors for antisocial behaviour involving police.
Psychiatry Research,
291:113208,
2020.
Bram Ton,
Rob Basten,
John Bolte,
Jan Braaksma,
Alessandro di Bucchianico,
Philippe Calseyde,
Frank Grooteman,
Tom Heskes,
Nils Jansen,
Wouter Teeuw,
Tiedo Tinga,
and Mariëlle Stoelinga.
PrimaVera: Synergising predictive maintenance.
Applied Sciences,
10:8348,
2020.
Ioan Gabriel Bucur,
Tom Claassen,
and Tom Heskes.
Inferring the direction of a causal link and estimating its effect via a Bayesian Mendelian randomization approach.
Statistical Methods in Medical Research,
pp 0962280219851817,
2019.
Ioan Gabriel Bucur,
Tom Claassen,
and Tom Heskes.
Large-scale local causal inference of gene regulatory relationships.
International Journal of Approximate Reasoning,
155:50-68,
2019.
Sascha Caron,
Tom Heskes,
Sydney Otten,
and Bob Stienen.
Constraining the parameters of high-dimensional models with active learning.
European Physical Journal C,
79:944,
2019.
Ruifei Cui,
Ioan Gabriel Bucur,
Perry Groot,
and Tom Heskes.
A novel Bayesian approach for latent variable modeling from mixed data with missing values.
Statistics and Computing,
29:977-993,
2019.
Ruifei Cui,
Perry Groot,
and Tom Heskes.
Learning causal structure from mixed data with missing values using Gaussian copula models.
Statistics and Computing,
29(2):311-333,
2019.
Luc Evers,
Jesse Krijtje,
Marjan Meinders,
Bas Bloem,
and Tom Heskes.
Measuring Parkinson's disease over time: the real-world within-subject reliability of the MDS-UPDRS.
Movement Disorders,
34:1480-1487,
2019.
Simone Lederer,
Tjeerd Dijkstra,
and Tom Heskes.
Additive dose response models: Defining synergy.
Frontiers in Pharmacology,
10:1384,
2019.
Payam Piray,
Amir Dezfouli,
Tom Heskes,
Michael J Frank,
and Nathaniel D Daw.
Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies.
PLOS Computational Biology,
15(6):e1007043,
2019.
Ridho Rahmadi,
Perry Groot,
and Tom Heskes.
Stable specification search in structural equation models with latent variables.
Transactions on Intelligent Systems and Technology,
10(5):48,
2019.
Simone Lederer,
Tjeerd Dijkstra,
and Tom Heskes.
Additive dose response models: Explicit formulation and the Loewe additivity consistency condition.
Frontiers in Pharmacology,
9:31,
2018.
Kees Okkersen,
Cecilia Jimenez-Moreno,
Stephan Wenninger,
Ferroudja Daidj,
...,
Tom Heskes,
...,
and Juliane Dittrich.
Cognitive behavioural therapy with optional graded exercise therapy in patients with severe fatigue with myotonic dystrophy type 1: a multicentre, single-blind, randomised trial.
The Lancet Neurology,
17(8):671-680,
2018.
Markus Peters,
Maytal Saar-Tsechansky,
Wolfgang Ketter,
Sinead Williamson,
Perry Groot,
and Tom Heskes.
A scalable preference model for autonomous decision-making.
Machine Learning,
107:1039-1068,
2018.
Ridho Rahmadi,
Perry Groot,
and Tom Heskes.
The stablespec package for causal discovery on cross-sectional and longitudinal data in R.
Neurocomputing,
275:2440-2443,
2018.
Ridho Rahmadi,
Perry Groot,
Marieke van Rijn,
Jan van den Brand,
Marianne Heins,
Hans Knoop,
Tom Heskes,
the Alzheimer's Disease Neuroimaging Initiative,
the MASTERPLAN Study Group,
and the OPTIMISTIC consortium.
Causality on longitudinal data: Stable specification search in constrained structural equation modeling.
Statistical Methods in Medical Research,
27(12):3814-3834,
2018.
Bram Thijssen,
Tjeerd Dijkstra,
Tom Heskes,
and Lodewyk Wessels.
Bayesian data integration for quantifying the contribution of diverse measurements to parameter estimates.
Bioinformatics,
34:803-811,
2018.
Christiaan de Leeuw,
Sven Stringer,
Ilona Dekkers,
Tom Heskes,
and Danielle Posthuma.
Conditional and interaction gene-set analysis reveals novel functional pathways for blood pressure.
Nature Communications,
9:3768,
2018.
Francesco Del Carratore,
Andris Jankevics,
Rob Eisinga,
Tom Heskes,
Fangxin Hong,
and Rainer Breitling.
RankProd 2.0: a refactored Bioconductor package for detecting differentially expressed features in molecular profiling datasets.
Bioinformatics,
33:2774-2775,
2017.
Rob Eisinga,
Tom Heskes,
Ben Pelzer,
and Manfred Te Grotenhuis.
Exact p-values for pairwise comparison of Friedman rank sums, with application to comparing classifiers.
BMC Bioinformatics,
18:68,
2017.
Mohsen Ghafoorian,
Nico Karssemeijer,
Tom Heskes,
Mayra Bergkamp,
Joost Wissink,
Jiri Obels,
Karlijn Keizer,
Frank-Erik de Leeuw,
Bram van Ginneken,
Elena Marchiori,
and Bram Platel.
Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin.
NeuroImage Clinical,
14:391-399,
2017.
Mohsen Ghafoorian,
Nico Karssemeijer,
Tom Heskes,
Inge van Uden,
Clara Sanchez,
Geert Litjens,
Frank-Erik de Leeuw,
Bram van Ginneken,
Elena Marchiori,
and Bram Platel.
Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities.
Scientific Reports,
7:5110,
2017.
Fabian Gieseke,
Steven Bloemen,
Cas van den Bogaard,
Tom Heskes,
Jonas Kindler,
Richard Scalzo,
Valèrio Ribeiro,
Jan van Roestel,
Paul Groot,
Fang Yuan,
Anais Möller,
and Brad Tucker.
Convolutional neural networks for transient candidate vetting in large-scale surveys.
Monthly Notices of the Royal Astronomical Society,
472:3101-3114,
2017.
Thomas Grubinger,
Adriana Birlutiu,
Holger Schöner,
Thomas Natschläger,
and Tom Heskes.
Multi-domain transfer component analysis for domain generalization.
Neural Processing Letters,
46:845-855,
2017.
Ridho Rahmadi,
Perry Groot,
Marianne Heins,
Hans Knoop,
and Tom Heskes.
Causality on cross-sectional data: Stable specification search in constrained structural equation modeling.
Applied Soft Computing,
52:687-698,
2017.
Elena Sokolova,
Anoek Oerlemans,
Nanda Rommelse,
Perry Groot,
Catharina Hartman,
Jeffrey Glennon,
Tom Claassen,
Tom Heskes,
and Jan Buitelaar.
A causal and mediation analysis of the comorbidity between attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD).
Journal of Autism and Developmental Disorders,
47:1595-1604,
2017.
Elena Sokolova,
Daniel von Rhein,
Jilly Naaijen,
Perry Groot,
Tom Claassen,
Jan Buitelaar,
and Tom Heskes.
Handling hybrid and missing data in constraint-based causal discovery to study the etiology of ADHD.
International Journal of Data Science and Analytics,
3:105-119,
2017.
Botond Cseke,
Andrew Zammit-Mangion,
Tom Heskes,
and Guido Sanguinetti.
Sparse approximate inference for spatio-temporal point process models.
Journal of the American Statistical Association,
111(516):1746-1763,
2016.
Mohsen Ghafoorian,
Nico Karssemeijer,
Inge van Uden,
Frank Erik de Leeuw,
Tom Heskes,
Elena Marchiori,
and Bram Platel.
Automated detection of white matter hyperintensities of all sizes in cerebral small vessel disease.
Medical Physics,
43:6246,
2016.
Elena Sokolova,
Perry Groot,
Tom Claassen,
Kimm van Hulzen,
Jeffrey Glennon,
Barbara Franke,
Tom Heskes,
and Jan Buitelaar.
Statistical evidence suggests that inattention drives hyperactivity/impulsivity in attention deficit-hyperactivity disorder.
PLOS ONE,
11(10):e0165120,
2016.
Bram Thijssen,
Tjeerd Dijkstra,
Tom Heskes,
and Lodewyk Wessels.
BCM: toolkit for Bayesian analysis of Computational Models using samplers.
BMC Systems Biology,
10(1):100,
2016.
Christiaan de Leeuw,
Benjamin Neale,
Tom Heskes,
and Danielle Posthuma.
The statistical properties of gene-set analysis.
Nature Review Genetics,
17:353-364,
2016.
Adriana Birlutiu,
Florence d'Alché-Buc,
and Tom Heskes.
A Bayesian framework for combining protein and network topology information for predicting protein-protein interactions.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
12:538-550,
2015.
Max Hinne,
Matthias Ekman,
Ronald Janssen,
Tom Heskes,
and Marcel van Gerven.
Probabilistic clustering of the human connectome identifies communities and hubs.
PLOS ONE,
10(1):e0117179,
2015.
Max Hinne,
Ronald Janssen,
Tom Heskes,
and Marcel van Gerven.
Bayesian estimation of conditional independence graphs improves functional connectivity estimates.
PLOS Computational Biology,
11(11):e1004534,
2015.
Sanne Schoenmakers,
Umut Güçlü,
Marcel van Gerven,
and Tom Heskes.
Gaussian mixture models and semantic gating improve reconstructions from human brain activity.
Frontiers in Computational Neuroscience,
8(173),
2015.
Elena Sokolova,
Martine Hoogman,
Perry Groot,
Tom Claassen,
Alejandro Arias Vasquez,
Jan Buitelaar,
Barbara Franke,
and Tom Heskes.
Causal discovery in an adult ADHD data set suggests indirect link between DAT1 genetic variants and striatal brain activation during reward processing.
American Journal of Medical Genetics Part B: Neuropsychiatric Genetics,
9999B:1-8,
2015.
Christiaan de Leeuw,
Joris Mooij,
Tom Heskes,
and Danielle Posthuma.
MAGMA: Generalized Gene-Set Analysis of GWAS Data.
PLOS Computational Biology,
11(4):e1004219,
2015.
Syed Saiden Abbas,
Tjeerd Dijkstra,
and Tom Heskes.
A comparative study of cell classifiers for image-based high-throughput screening.
BMC Bioinformatics,
15:342,
2014.
Jesse Alama,
Tom Heskes,
Daniel Kühlwein,
Evgeni Tsivtsivadze,
and Josef Urban.
Premise selection for mathematics by corpus analysis and kernel methods.
Journal of Automated Reasoning,
52:191-213,
2014.
Tom Heskes,
Rob Eisinga,
and Rainer Breitling.
A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments.
BMC Bioinformatics,
15:367,
2014.
Max Hinne,
Luca Ambrogioni,
Ronald Janssen,
Tom Heskes,
and Marcel van Gerven.
Structurally-informed Bayesian functional connectivity analysis.
NeuroImage,
86:294-305,
2014.
Max Hinne,
Alex Lenkoski,
Tom Heskes,
and Marcel van Gerven.
Efficient sampling of Gaussian graphical models using conditional Bayes factors.
Stat,
3(1):326-336,
2014.
Ronald Janssen,
Max Hinne,
Tom Heskes,
and Marcel van Gerven.
Quantifying uncertainty in brain network measures using Bayesian connectomics.
Frontiers in Computational Neuroscience,
8(126),
2014.
Frank Koopmans,
Niels Cornelisse,
Tom Heskes,
and Tjeerd Dijkstra.
An empirical Bayesian random censoring threshold model improves detection of differentially abundant proteins.
Journal of Proteome Research,
13:3871-3880,
2014.
Syed Saiden Abbas,
Tjeerd Dijkstra,
and Tom Heskes.
A direct comparison of visual discrimination of shape and size on a large range of aspect ratios.
Vision Research,
91:84-92,
2013.
Syed Saiden Abbas,
Tom Heskes,
Onno Zoeter,
and Tjeerd Dijkstra.
A Bayesian psychophysical model for angular variables.
Journal of Mathematical Psychology,
57:134-139,
2013.
Adriana Birlutiu,
Perry Groot,
and Tom Heskes.
Efficiently learning the preferences of people.
Machine Learning,
90:1-28,
2013.
Rob Eisinga,
Rainer Breitling,
and Tom Heskes.
The exact probability distribution of the rank product statistics for replicated experiments.
FEBS Letters,
587(6):677-682,
2013.
Max Hinne,
Tom Heskes,
Christian Beckmann,
and Marcel van Gerven.
Bayesian inference of structural brain networks.
NeuroImage,
66:543-552,
2013.
Eleftheria Mavridou,
Joseph Meletiadis,
Pavol Jancura,
Saiden Abbas,
Maiken Arendrup,
Willem Melchers,
Tom Heskes,
Johan Mouton,
and Paul Verweij.
Composite survival index to compare virulence changes in azole-resistant Aspergillus fumigatus clinical isolates.
PLOS ONE,
8(8):e72280,
2013.
Sanne Schoenmakers,
Markus Barth,
Tom Heskes,
and Marcel van Gerven.
Linear reconstruction of perceived images from human brain activity.
NeuroImage,
83:951-961,
2013.
Diego Vidaurre,
Marcel van Gerven,
Concha Bielza,
Pedro Larrañaga,
and Tom Heskes.
Bayesian sparse partial least squares.
Neural Computation,
25:3318-3339,
2013.
Niels Cornelisse,
Evgeni Tsivtsivadze,
Marieke Meijer,
Tjeerd Dijkstra,
Tom Heskes,
and Matthijs Verhage.
Molecular machines in the synapse: overlapping protein sets control distinct steps in neurosecretion.
PLOS Computational Biology,
8:e1002450,
2012.
Marcel van Gerven,
Zenas Chao,
and Tom Heskes.
On the decoding of intracranial data using sparse orthonormalized partial least squares.
Journal of Neural Engineering,
9:026017,
2012.
Evgeni Tsivtsivadze,
Tapio Pahikkala,
Jorma Boberg,
Tapio Salakoski,
and Tom Heskes.
Co-regularized least-squares for label ranking.
In Johannes Fürnkranz and Eyke Hüllermeier, editors, Preference Learning,
pages 107-123.
Springer,
2011.
Onno Zoeter and Tom Heskes.
Expectation propagation and generalised EP methods for inference in switching Kalman filter models.
In David Barber,
Ali Taylan Cemgil,
and Silvia Chiappa, editors, Probabilistic Methods for Time-Series Analysis,
pages 181-207.
Cambridge University Press,
2011.
Ali Bahramisharif,
Tom Heskes,
Ole Jensen,
and Marcel van Gerven.
Lateralized responses during covert attention are modulated by target eccentricity.
Neuroscience Letters,
491:35-39,
2011.
Botond Cseke and Tom Heskes.
Approximate marginals in latent Gaussian models.
Journal of Machine Learning Research,
12:417-454,
2011.
Botond Cseke and Tom Heskes.
Properties of Bethe free energies and message passing in Gaussian models.
Journal of Artificial Intelligence Research,
41:1-24,
2011.
Perry Groot,
Tom Heskes,
Tjeerd Dijkstra,
and James Kates.
Predicting preference judgments of individual normal and hearing-impaired listeners with Gaussian processes.
IEEE Transactions on Audio, Sound, and Language Processing,
19:811-821,
2011.
Marcel van Gerven,
Peter Kok,
Floris de Lange,
and Tom Heskes.
Dynamic decoding of ongoing perception.
NeuroImage,
53:950-957,
2011.
Ali Bahramisharif,
Marcel van Gerven,
Tom Heskes,
and Ole Jensen.
Covert attention allows for continuous control of brain-computer interfaces.
European Journal of Neuroscience,
31:1501-1508,
2010.
Adriana Birlutiu,
Perry Groot,
and Tom Heskes.
Multi-task preference learning with an application to hearing aid personalization.
Neurocomputing,
73:1177-1185,
2010.
Marcel van Gerven,
Botond Cseke,
Floris de Lange,
and Tom Heskes.
Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior.
NeuroImage,
50:150-161,
2010.
Marcel van Gerven,
Floris de Lange,
and Tom Heskes.
Neural decoding with hierarchical generative models.
Neural Computation,
22:3127-3142,
2010.
Tom Heskes and Botond Cseke.
Discussion on `Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations' by H. Rue, S. Martino, and N. Chopin.
Journal of the Royal Statistical Society Series B.,
71:370,
2009.
Rasa Jurgelenaite,
Tjeerd Dijkstra,
Clemens Kocken,
and Tom Heskes.
Gene regulation in the intraerythrocytic cycle of Plasmodium Falciparum.
Bioinformatics,
25:1484-1491,
2009.
Marcel van Gerven,
Ali Bahramisharif,
Tom Heskes,
and Ole Jensen.
Selecting features for BCI control based on a covert spatial attention paradigm.
Neural Networks,
22:1271-1277,
2009.
Marcel van Gerven,
Christian Hesse,
Ole Jensen,
and Tom Heskes.
Interpreting single trial data using groupwise regularisation.
NeuroImage,
46:665-676,
2009.
Rasa Jurgelenaite and Tom Heskes.
Learning symmetric causal independence models.
Machine Learning,
71:133-153,
2008.
Kees Albers,
Tom Heskes,
and Bert Kappen.
Haplotype inference in general pedigrees using the cluster variation method.
Genetics,
177:1101-1116,
2007.
Bart Bakker and Tom Heskes.
Learning and approximate inference in dynamic hierarchical models.
Computational Statistics & Data Analysis,
52:821-839,
2007.
Marcel van Gerven,
Rasa Jurgelenaite,
Babs Taal,
Tom Heskes,
and Peter Lucas.
Predicting carcinoid heart disease with the noisy-threshold classifier.
Artificial Intelligence in Medicine,
40:45-55,
2007.
Tom Heskes.
Convexity arguments for efficient minimization of the Bethe and Kikuchi free energies.
Journal of Artificial Intelligence Research,
26:153-190,
2006.
Onno Zoeter and Tom Heskes.
Deterministic approximate inference techniques for conditionally Gaussian state space models.
Statistics and Computing,
16:279-292,
2006.
Tom Heskes,
Manfred Opper,
Wim Wiegerinck,
Ole Winther,
and Onno Zoeter.
Approximate inference techniques with expectation constraints.
Journal of Statistical Mechanics: Theory and Experiment,
2005:P11015,
2005.
Alexander Ypma and Tom Heskes.
Novel approximations for inference in nonlinear dynamical systems using expectation propagation.
Neurocomputing,
69:85-99,
2005.
Onno Zoeter and Tom Heskes.
Change point problems in linear dynamical systems.
Journal of Machine Learning Research,
6:1999-2026,
2005.
David Barber and Tom Heskes.
An introduction to neural networks.
In Encyclopedia of Life Support Systems.
2004.
Bart Bakker,
Tom Heskes,
Jan Neijt,
and Bert Kappen.
Improving Cox survival analysis with a neural-Bayesian approach.
Statistics in Medicine,
23:2989-3012,
2004.
Tom Heskes.
On the uniqueness of loopy belief propagation fixed points.
Neural Computation,
16:2379-2413,
2004.
Jan-Joost Spanjers and Tom Heskes.
Neural networks for modeling volatility and market capitalization.
In Gordian Gaeta,
Shamez Alibhai,
and Justin Hingorani, editors, Frontiers in Credit Risk: Concepts and Techniques for Applied Credit Risk Measurement,
pages 136-152.
2003.
Bart Bakker and Tom Heskes.
Task clustering and gating for Bayesian multitask learning.
Journal of Machine Learning Research,
4:83-99,
2003.
Tom Heskes,
Jan-Joost Spanjers,
Bart Bakker,
and Wim Wiegerinck.
Optimising newspaper sales using neural-Bayesian technology.
Neural Computing and Applications,
12:212-219,
2003.
Onno Zoeter and Tom Heskes.
Hierarchical visualization of time-series data using switching linear dynamical systems.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
25:1201-1214,
2003.
Wim Wiegerinck and Tom Heskes.
Belief networks/Bayesian networks.
In J. Meij, editor, Dealing with the data flow. Mining data, text and multimedia,
pages 660-665.
STT Netherlands Study Centre for Technology Trends,
The Hague, The Netherlands,
2002.
Bart Bakker and Tom Heskes.
Clustering ensembles of neural network models.
Neural Networks,
16:261-269,
2002.
Tom Heskes,
Bart Bakker,
and Bert Kappen.
Approximate Algorithms for Neural-Bayesian Approaches.
Theoretical Computer Science,
287:219-238,
2002.
Tom Heskes.
The use of being stubborn and introspective.
In H. Ritter,
H. Cruse,
and J. Dean, editors, Prerational Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic,
pages 725-741.
Kluwer,
Dordrecht,
2001.
Tom Heskes.
Self-organizing maps, vector quantization, and mixture modeling.
IEEE Transactions on Neural Networks,
12:1299-1305,
2001.
Tom Heskes.
On natural learning and pruning in multilayered perceptrons.
Neural Computation,
12:1037-1057,
2000.
Gabe Sonke,
Tom Heskes,
André Verbeek,
Jean De La Rosette,
and Bart Kiemeney.
Prediction of bladder outlet obstruction in men with lower urinary tract symptoms using artificial neural networks.
Journal of Urology,
163:300-305,
2000.
Piërre van de Laar and Tom Heskes.
Input selection based on an ensemble.
Neurocomputing,
34:227-238,
2000.
Tom Heskes.
Energy functions for self-organizing maps.
In E. Oja and S. Kaski, editors, Kohonen Maps,
pages 303-315.
Elsevier,
Amsterdam,
1999.
Piërre van de Laar and Tom Heskes.
Pruning using parameter and neuronal metrics.
Neural Computation,
11:977-993,
1999.
Piërre van de Laar,
Tom Heskes,
and Stan Gielen.
Partial retraining: a new approach to input relevance determination.
International Journal of Neural Systems,
9:75-85,
1999.
Tom Heskes and Wim Wiegerinck.
On-line learning with time-correlated examples.
In D. Saad, editor, On-line Learning in Neural Networks,
pages 251-278.
1998.
Tom Heskes.
Bias/variance decompositions for likelihood-based estimators.
Neural Computation,
10:1425-1433,
1998.
Tom Heskes and Jeroen Coolen.
Learning in two-layered networks with correlated examples.
Journal of Physics A,
30:4983-4992,
1997.
Piërre van de Laar,
Tom Heskes,
and Stan Gielen.
Task-dependent learning of attention.
Neural Networks,
10:981-992,
1997.
Tom Heskes.
Transition times in self-organizing maps.
Biological Cybernetics,
75:49-57,
1996.
Tom Heskes and Wim Wiegerinck.
A theoretical comparison of batch-mode, on-line, cyclic, and almost cyclic learning.
IEEE Transactions on Neural Networks,
7:919-925,
1996.
Wim Wiegerinck and Tom Heskes.
How dependencies between successive examples affect on-line learning.
Neural Computation,
8:1743-1765,
1996.
Tom Heskes.
On Fokker-Planck approximations of on-line learning processes.
Journal of Physics A,
27:5145-5160,
1994.
Wim Wiegerinck and Tom Heskes.
On-line learning with time-correlated patterns.
Europhysics Letters,
28:451-455,
1994.
Wim Wiegerinck,
Andrzej Komoda,
and Tom Heskes.
Stochastic dynamics of learning with momentum in neural networks.
Journal of Physics A,
27:4425-4437,
1994.
Tom Heskes and Bert Kappen.
On-line learning processes in artificial neural networks.
In J. Taylor, editor, Mathematical Approaches to Neural Networks,
pages 199-233.
Elsevier,
Amsterdam,
1993.
Tom Heskes,
Eddy Slijpen,
and Bert Kappen.
Cooling schedules for learning in neural networks.
Physical Review E,
47:4457-4464,
1993.
Tom Heskes and Stan Gielen.
Retrieval of pattern sequences at variable speeds in a neural network with delays.
Neural Networks,
5:145-152,
1992.
Tom Heskes and Bert Kappen.
Learning-parameter adjustment in neural networks.
Physical Review A,
45:8885-8893,
1992.
Tom Heskes,
Eddy Slijpen,
and Bert Kappen.
Learning in neural networks with local minima.
Physical Review A,
46:5221-5231,
1992.
Tom Heskes and Bert Kappen.
Learning processes in neural networks.
Physical Review A,
44:2718-2726,
1991.
Mirthe van Diepen,
Ioan Gabriel Bucur,
Tom Heskes,
and Tom Claassen.
Beyond the Markov equivalence class: extending causal discovery under latent confounding.
In Causal Learning and Reasoning,
2023.
Lisandro Jimenez-Roa,
Tom Heskes,
Tiedo Tinga,
Hajo Molegraaf,
and Mariëlle Stoelinga.
Deterioration modeling of sewer pipes via discrete-time Markov chains: A large-scale case study in the Netherlands.
In Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022),
2022.
Jelle Piepenbrock,
Tom Heskes,
Mikolás Janota,
and Josef Urban.
Guiding an automated theorem prover with neural rewriting.
In Jasmin Blanchette,
Laura Kovács,
and Dirk Pattinson, editors,
Automated Reasoning. IJCAR 2022,
Cham,
pages 597-617,
2022.
Springer International Publishing.
Lisandro Jimenez-Roa,
Tom Heskes,
and Mariëlle Stoelinga.
Fault trees, decision trees, and binary decision diagrams: A systematic comparison.
In Bruno Castanier,
Marko Cepin,
David Bigaud,
and Christophe Berenguer, editors,
Proceedings of ESREL 2021: 31st European Safety and Reliability Conference,
pages 673-680,
2021.
Ioan Gabriel Bucur,
Tom Claassen,
and Tom Heskes.
MASSIVE: Tractable and robust Bayesian learning of many-dimensional instrumental variable models.
In Proceedings of Uncertainty in Artificial Intelligence 2020,
pages 1049-1058,
2020.
Proceedings of Machine Learning Research.
Tom Heskes,
Evi Sijben,
Ioan Gabriel Bucur,
and Tom Claassen.
Causal Shapley values: Exploiting causal knowledge to explain individual predictions of complex models.
In H. Larochelle,
M. Ranzato,
R. Hadsell,
M. F. Balcan,
and H. Lin, editors,
Advances in Neural Information Processing Systems,
volume 33,
pages 4778--4789,
2020.
Curran Associates, Inc..
Konrad Mielke,
Tom Claassen,
Mark Huijbregts,
Aafke Schipper,
and Tom Heskes.
Discovering cause-effect relationships in spatial systems with a known direction based on observational data.
In PGM 2020,
2020.
Fabian Gieseke,
Cosmin Eugen Oancea,
Ashis Mahabal,
Christian Igel,
and Tom Heskes.
Bigger buffer k-d trees on multi-many-core systems.
In Workshop on Big Data and Deep Learning in High Performance Computing. Lecture Notes in Computer Science,
pages 202-214,
2019.
Fajar Agung Nugroho,
Adi Wibowo,
Thomas Ederveen,
Jos Boekhorst,
Marien de Jonge,
and Tom Heskes.
Application of a causal discovery model to study the effect of iron supplementation in children with iron deficiency anemia.
In Proceedings of ICICoS,
2019.
Ioan Gabriel Bucur,
Tom van Bussel,
Tom Claassen,
and Tom Heskes.
A Bayesian approach for inferring local causal structure in gene regulatory networks.
In Václav Kratochvìl and Milan Studeny, editors,
Proceedings of the Ninth International Conference on Probabilistic Graphical Models,
volume 72 of Proceedings of Machine Learning Research,
Prague, Czech Republic,
pages 37-48,
11-14 Sep 2018.
PMLR.
Ruifei Cui,
Perry Groot,
Moritz Schauer,
and Tom Heskes.
Learning the causal structure of copula models with latent variables.
In UAI 2018,
2018.
Ioan Gabriel Bucur,
Tom Claassen,
and Tom Heskes.
Robust causal estimation in the large-sample limit without strict faithfulness.
In Aarti Singh and Jerry Zhu, editors,
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,
volume 54 of Proceedings of Machine Learning Research,
Fort Lauderdale, FL, USA,
pages 1523-1531,
20-22 Apr 2017.
PMLR.
Ruifei Cui,
Perry Groot,
and Tom Heskes.
Robust estimation of Gaussian copula causal structure from mixed data with missing values.
In 2017 IEEE International Conference on Data Mining (ICDM),
pages 835-840,
2017.
Fabian Gieseke,
Kai Lars Polsterer,
Ashish Mahabal,
Christian Igel,
and Tom Heskes.
Massively-parallel best subset selection for ordinary least-squares regression.
In 2017 IEEE Symposium Series on Computational Intelligence (SSCI),
pages 1-8,
2017.
Harm Berntsen,
Wouter Kuijper,
and Tom Heskes.
The artificial mind's eye: resisting adversarials for convolutional neural networks using internal projection.
In Proceedings of the Workshop New Challenges in Neural Computation (NC2) 2016,
2016.
Ruifei Cui,
Perry Groot,
and Tom Heskes.
Copula PC algorithm for causal discovery from mixed data.
In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Proceedings, Part II,
pages 377-392,
2016.
Mohsen Ghafoorian,
Nico Karssemeijer,
Tom Heskes,
Inge van Uden,
Frank Erik de Leeuw,
Elena Marchiori,
Bram van Ginneken,
and Bram Platel.
Non-uniform patch sampling with deep convolutional neural networks for white matter hyperintensity segmentation.
In 2016 IEEE 13th International Symposium on Biomedical Imaging ISBI,
pages 1414-1417,
2016.
Stefan Leijnen,
Tom Heskes,
and Terrence Deacon.
Exploring constraint: simulating self-organization and autogenesis in the autogenic automaton.
In Proceedings of the Artificial Life Conference 2016,
pages 68-75,
2016.
Elena Sokolova,
Martine Hoogman,
Perry Groot,
Tom Claassen,
and Tom Heskes.
Computing lower and upper bounds on the probability of causal statements.
In Proceedings of the Eighth International Conference on Probabilistic Graphical Models,
pages 487-498,
2016.
Koen Vijverberg,
Mohsen Ghafoorian,
Inge van Uden,
Frank-Erik de Leeuw,
Bram Platel,
and Tom Heskes.
A single-layer network unsupervised feature learning method for white matter hyperintensity segmentation.
In Proc. SPIE,
volume 9785,
pages 97851C-97851C-7,
2016.
Fabian Gieseke,
Tapio Pahikkala,
and Tom Heskes.
Batch steepest-descent-mildest-ascent for interactive maximum margin clustering.
In Elisa Fromont,
Tijl De Bie,
and Matthijs van Leeuwen, editors,
Advances in Intelligent Data Analysis XIV,
volume 9385 of Lecture Notes in Computer Science,
pages 95-107,
2015.
Springer International Publishing.
Thomas Grubinger,
Adriana Birlutiu,
Holger Schöner,
Thomas Natschläger,
and Tom Heskes.
Domain Generalization Based on Transfer Component Analysis.
In Ignacio Rojas,
Gonzalo Joya,
and Andreu Catala, editors,
Advances in Computational Intelligence,
volume 9094 of Lecture Notes in Computer Science,
pages 325-334,
2015.
Springer International Publishing.
Ridho Rahmadi,
Perry Groot,
Marianne Heins,
Hans Knoop,
and Tom Heskes.
Causality on longitudinal data: stable specification search in constrained structural equation modeling.
In Proceedings 1st International Workshop on Advanced Analytics and Learning on Temporal Data AALTD 2015,
2015.
Sanne Schoenmakers,
Tom Heskes,
and Marcel van Gerven.
Hidden Markov models for reading words from the human brain.
In Pattern Recognition in NeuroImaging (PRNI), 2015 International Workshop on,
pages 89-92,
2015.
Elena Sokolova,
Perry Groot,
Tom Claassen,
Daniel von Rhein,
Jan Buitelaar,
and Tom Heskes.
Causal discovery from medical data: dealing with missing values and a mixture of discrete and continuous data.
In John H. Holmes,
Riccardo Bellazzi,
Lucia Sacchi,
and Niels Peek, editors,
Artificial Intelligence in Medicine,
volume 9105 of Lecture Notes in Computer Science,
pages 177-181,
2015.
Springer International Publishing.
Laurens Wiel,
Tom Heskes,
and Evgeni Levin.
KeCo: kernel-based online co-agreement algorithm.
In Nathalie Japkowicz and Stan Matwin, editors,
Discovery Science,
volume 9356 of Lecture Notes in Computer Science,
pages 308-315,
2015.
Springer International Publishing.
Adriana Birlutiu and Tom Heskes.
Using Topology Information for Protein-Protein Interaction Prediction.
In Matteo Comin,
Lukas Käll,
Elena Marchiori,
Alioune Ngom,
and Jagath Rajapakse, editors,
Pattern Recognition in Bioinformatics,
volume 8626 of Lecture Notes in Computer Science,
pages 10-22,
2014.
Springer International Publishing.
Binyam Gebrekidan Gebre,
Onno Crasborn,
Peter Wittenburg,
Sebastian Drude,
and Tom Heskes.
Unsupervised feature learning for visual sign language identification.
In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics,
Baltimore, Maryland,
pages 370-376,
2014.
Association for Computational Linguistics.
Binyam Gebrekidan Gebre,
Peter Wittenburg,
Sebastian Drude,
Marijn Huijbregts,
and Tom Heskes.
Speaker diarization using gesture and speech.
In Proceedings of Interspeech 2014: 15th Annual Conference of the International Speech Communication Association,
2014.
Binyam Gebrekidan Gebre,
Peter Wittenburg,
Tom Heskes,
and Sebastian Drude.
Motion history images for online speaker/signer diarization.
In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on,
pages 1537-1541,
2014.
Perry Groot,
Markus Peters,
Tom Heskes,
and Wolfgang Ketter.
Fast Laplace approximation for Gaussian processes with a tensor product kernel.
In Proceedings of BNAIC 2014,
pages 41-48,
2014.
Mike Koeman and Tom Heskes.
Mutual information estimation with random forests.
In ChuKiong Loo,
KeemSiah Yap,
KokWai Wong,
Andrew Teoh,
and Kaizhu Huang, editors,
Neural Information Processing,
volume 8835 of Lecture Notes in Computer Science,
pages 524-531,
2014.
Springer International Publishing.
Ridho Rahmadi,
Perry Groot,
and Tom Heskes.
Stable specification searches in structural equation modeling using multi-objective evolutionary algorithm.
In Proceedings of SNATI 2014,
2014.
Sanne Schoenmakers,
Marcel van Gerven,
and Tom Heskes.
Gaussian mixture models improve fMRI-based image reconstruction.
In Pattern Recognition in Neuroimaging, 2014 International Workshop on,
pages 1-4,
2014.
Elena Sokolova,
Perry Groot,
Tom Claassen,
and Tom Heskes.
Causal discovery from databases with discrete and continuous variables.
In Linda van der Gaag and Ad Feelders, editors,
Probabilistic Graphical Models,
volume 8754 of Lecture Notes in Computer Science,
pages 442-457,
2014.
Springer International Publishing.
Tom Claassen and Tom Heskes.
Bayesian probabilities for constraint-based causal discovery.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI),
pages 2992-2996,
2013.
Tom Claassen,
Joris Mooij,
and Tom Heskes.
Learning sparse causal models is not NP-hard.
In UAI 2013, Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence,
pages 172-181,
2013.
Binyam Gebrekidan Gebre,
Peter Wittenburg,
and Tom Heskes.
Automatic sign language identification.
In Image Processing (ICIP), 2013 20th IEEE International Conference on,
pages 2626-2630,
2013.
Binyam Gebrekidan Gebre,
Peter Wittenburg,
and Tom Heskes.
Automatic signer diarization - the mover is the signer approach.
In Computer Vision and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on,
pages 283-287,
2013.
Binyam Gebrekidan Gebre,
Peter Wittenburg,
and Tom Heskes.
The gesturer is the speaker.
In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on,
pages 3751-3755,
2013.
Binyam Gebrekidan Gebre,
Marcos Zampieri,
Peter Wittenburg,
and Tom Heskes.
Improving native language identification with TF-IDF weighting.
In Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications,
pages 216--223,
2013.
Joris Mooij and Tom Heskes.
Cyclic causal discovery from continuous equilibrium data.
In UAI 2013, Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence,
pages 431-439,
2013.
Joris Mooij and Tom Heskes.
Discovering cyclic causal models from continuous equilibrium data.
In Proceedings of the Seventh International Workshop on Machine Learning in Systems Biology (MLSB),
2013.
Evgeni Tsivtsivadze,
Hanneke Borgdorff,
Jannekevan de Wijgert,
Frank Schuren,
Rita Verhelst,
and Tom Heskes.
Neighborhood Co-regularized Multi-view Spectral Clustering of Microbiome Data.
In Zhi-Hua Zhou and Friedhelm Schwenker, editors,
Partially Supervised Learning,
volume 8183 of Lecture Notes in Computer Science,
pages 80-90,
2013.
Springer Berlin Heidelberg.
Evgeni Tsivtsivadze,
Tom Heskes,
and Armand Paauw.
Multi-view multi-class classification for identification of pathogenic bacterial strains.
In Zhi-Hua Zhou,
Fabio Roli,
and Josef Kittler, editors,
Multiple Classifier Systems,
volume 7872 of Lecture Notes in Computer Science,
pages 61-72,
2013.
Springer Berlin Heidelberg.
Ali Bahramisharif,
Marcel van Gerven,
Jan-Mathijs Schoffelen,
Zoubin Ghahramani,
and Tom Heskes.
The dynamic beamformer.
In Georg Langs,
Irina Rish,
Moritz Grosse-Wentrup,
and Brian Murphy, editors,
Machine Learning and Interpretation in Neuroimaging,
volume 7263 of Lecture Notes in Computer Science,
pages 148-155,
2012.
Springer Berlin Heidelberg.
Tom Claassen and Tom Heskes.
A Bayesian approach to constraint based causal inference.
In UAI 2012, Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence,
pages 207-216,
2012.
Daniel Kühlwein,
Twan Laarhoven,
Evgeni Tsivtsivadze,
Josef Urban,
and Tom Heskes.
Overview and evaluation of premise selection techniques for large theory mathematics.
In Bernhard Gramlich,
Dale Miller,
and Uli Sattler, editors,
International Joint Conference on Automated Reasoning,
volume 7364 of Lecture Notes in Computer Science,
pages 378-392,
2012.
Springer Berlin Heidelberg.
Tom de Ruijter,
Evgeni Tsivtsivadze,
and Tom Heskes.
Online co-regularized algorithms.
In Jean-Gabriel Ganascia,
Philippe Lenca,
and Jean-Marc Petit, editors,
Discovery Science,
volume 7569 of Lecture Notes in Computer Science,
pages 184-193,
2012.
Springer Berlin Heidelberg.
Evgeni Tsivtsivadze,
Katja Hofmann,
and Tom Heskes.
Large scale co-regularized ranking.
In ECAI Workshop on Preference Learning: Problems and Applications in AI,
2012.
Hans Wouters,
Marcel van Gerven,
Matthias Treder,
Tom Heskes,
and Ali Bahramisharif.
Covert attention as a paradigm for subject-independent brain-computer interfacing.
In Georg Langs,
Irina Rish,
Moritz Grosse-Wentrup,
and Brian Murphy, editors,
Machine Learning and Interpretation in Neuroimaging,
volume 7263 of Lecture Notes in Computer Science,
pages 156-163,
2012.
Springer Berlin Heidelberg.
Tom Claassen and Tom Heskes.
A logical characterization of constraint-based causal discovery.
In UAI 2011, Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence,
pages 135-144,
2011.
Tom Claassen and Tom Heskes.
A structure independent algorithm for causal discovery.
In ESANN 2011,
pages 309-314,
2011.
Perry Groot,
Adriana Birlutiu,
and Tom Heskes.
Learning from multiple annotators with Gaussian processes.
In Lecture Notes in Computer Science, Volume 6792, Artificial Neural Networks and Machine Learning (ICANN 2011),
pages 159-164,
2011.
Daniel Kühlwein,
Evgeni Tsivtsivadze,
Josef Urban,
and Tom Heskes.
Learning semantics for automated reasoning.
In Antoine Bordes,
Jason Weston,
Ronan Collobert,
and Leon Bottou, editors,
NIPS Workshop on Learning Semantics,
2011.
Daniel Kühlwein,
Josef Urban,
Evgeni Tsivtsivadze,
Herman Geuvers,
and Tom Heskes.
Learning2Reason.
In James H. Davenport,
William M. Farmer,
Josef Urban,
and Florian Rabe, editors,
Calculemus/MKM,
volume 6824 of Lecture Notes in Computer Science,
pages 298-300,
2011.
Daniel Kühlwein,
Josef Urban,
Evgeni Tsivtsivadze,
Herman Geuvers,
and Tom Heskes.
Multi-output ranking for automated reasoning.
In International Conference on Knowledge Discovery and Information Retrieval,
2011.
Joris Mooij,
Dominik Janzing,
Tom Heskes,
and Bernhard Schölkopf.
On causal discovery with cyclic additive noise models.
In Advances in Neural Information Processing Systems 24 (NIPS*2011),
pages 639-647,
2011.
John Quinn,
Joris Mooij,
Tom Heskes,
and Michael Biehl.
Learning of causal relations.
In ESANN 2011,
pages 287-296,
2011.
Evgeni Tsivtsivadze,
Josef Urban,
Herman Geuvers,
and Tom Heskes.
Semantic graph kernels for automated reasoning.
In Proceedings of the Eleventh SIAM International Conference on Data Mining, SDM 2011,
pages 795-803,
2011.
SIAM / Omnipress.
Marcel van Gerven,
Eric Maris,
and Tom Heskes.
Markov random field approach to neural encoding and decoding.
In Lecture Notes in Computer Science, Volume 6792, Artificial Neural Networks and Machine Learning, ICANN 2011,
pages 1-8,
2011.
Tom Claassen and Tom Heskes.
Causal discovery in multiple models from different experiments.
In John Lafferty,
Chris Williams,
Richard Zemel,
John Shawe-Taylor,
and Aron Culotta, editors,
Advances in Neural Information Processing Systems 23,
pages 415-423,
2010.
Tom Claassen and Tom Heskes.
Learning causal network structure from multiple (in)dependence models.
In Petri Myllymäki,
Teemu Roos,
and Tommi Jaakkola, editors,
Proceedings of PGM 2010,
pages 81-88,
2010.
Botond Cseke and Tom Heskes.
Improving posterior marginal approximations in latent Gaussian models.
In Yee Whye Teh and Mike Titterington, editors,
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
pages 121-128,
2010.
JMLR Workshop and Conference Proceedings.
Perry Groot,
Adriana Birlutiu,
and Tom Heskes.
Bayesian Monte Carlo for the global optimization of expensive functions.
In Helder Coelho,
Rudi Studer,
and Michael Wooldridge, editors,
Proceedings of ECAI,
pages 249-254,
2010.
Evgeni Tsivtsivadze and Tom Heskes.
Sparse preference learning.
In Irina Rish,
Alexandru Niculescu-Mizil,
Guillermo Cecchi,
and Aurelie Lozano, editors,
NIPS Workshop on Practical Application of Sparse Modeling: Open Issues and New Directions,
2010.
Florence d'Alché-Buc,
Adriana Birlutiu,
Celine Brouard,
Tom Heskes,
and Marie Szafranski.
Regularized output kernel regression for protein-protein interaction prediction: application to link transfer and transduction.
In Machine Learning in Computational Biology,
2010.
Marcel van Gerven and Tom Heskes.
Sparse orthonormalized partial least squares.
In BNAIC 2010,
2010.
Marcel van Gerven,
Floris de Lange,
and Tom Heskes.
A hierarchical generative model for percept reconstruction.
In Human Brain Mapping,
2010.
Ali Bahramisharif,
Marcel van Gerven,
and Tom Heskes.
Exploring the impact of alternative feature representations on BCI classification.
In Proceedings of ESANN'2009,
pages 455-460,
2009.
Adriana Birlutiu,
Perry Groot,
and Tom Heskes.
Multi-task preference learning with Gaussian Processes.
In Proceedings of ESANN'2009,
pages 123-128,
2009.
Niels Cornelisse,
Evgeni Tsivtsivadze,
Marieke Meijer,
Tjeerd Dijkstra,
Tom Heskes,
and Mathijs Verhage.
Identification of presynaptic gene clusters in synaptic signaling using functional data from genetic perturbation studies in Hippocampal autapses.
In 2nd INCF Congress of Neuroinformatics, Frontiers in Neuroinformatics (abstract),
2009.
Evgeni Tsivtsivadze,
Botond Cseke,
and Tom Heskes.
Kernel principal component ranking: robust ranking on noisy data.
In Eyke Hüllermeier and Johannes Fürnkranz, editors,
ECML/PKDD-Workshop on Preference Learning (PL-09),
pages 101-113,
2009.
Marcel van Gerven,
Botond Cseke,
Robert Oostenveld,
and Tom Heskes.
Bayesian source localization with the multivariate Laplace prior.
In Y. Bengio,
D. Schuurmans,
J. Lafferty,
C. K. I. Williams,
and A. Culotta, editors,
Advances in Neural Information Processing Systems 22,
pages 1901-1909,
2009.
Botond Cseke and Tom Heskes.
Bounds on the Bethe free energy for Gaussian networks.
In David A. McAllester and Petri Myllymäki, editors,
UAI 2008, Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence,
pages 97-104,
2008.
AUAI Press.
José Miguel Hernández-Lobato,
Tjeerd Dijkstra,
and Tom Heskes.
Regulator discovery from gene expression time series of malaria parasites: a hierarchical approach.
In J.C. Platt,
D. Koller,
Y. Singer,
and S. Roweis, editors,
Advances in Neural Information Processing Systems 20,
Cambridge, MA,
pages 649-656,
2008.
MIT Press.
Christian Hesse,
Tom Heskes,
and Ole Jensen.
Semi-blind identification of movement-related magnetoencephalogram components using a classification approach.
In Engineering in Medicine and Biology Society, 2008. 30th Annual International Conference of the IEEE,
pages 2618-2621,
2008.
Adriana Birlutiu and Tom Heskes.
Expectation propagation for rating players in sports competitions.
In Joost N. Kok,
Jacek Koronacki,
Ramon López de Mántaras,
Stan Matwin,
Dunja Mladenic,
and Andrzej Skowron, editors,
Proceedings ECML/PKDD,
volume 4702 of Lecture Notes in Computer Science,
pages 374-381,
2007.
Springer.
Christian Hesse,
Robert Oostenveld,
Tom Heskes,
and Ole Jensen.
On the development of a brain-computer interface system using high-density magnetoencephalogram signals for real-time control of a robot arm.
In Annual Symposium of the IEEE-EMBS Benelux Chapter,
2007.
Rasa Jurgelenaite,
Tom Heskes,
and Tjeerd Dijkstra.
Using symmetric causal independence models to predict gene expression from sequence data.
In A. Fazel Famili,
Xiaohui Liu,
and José-Marìa Peña, editors,
Proceedings of the 2nd Workshop in Data Mining in Functional Genomics and Proteomics,
pages 67-78,
2007.
Christian Hesse,
Daan Holtackers,
and Tom Heskes.
On the use of mixtures of Gaussians and mixtures of generalized exponentials for modelling and classifying biomedical signals.
In Proceedings of the 1st Annual Symposium IEEE EMBS Benelux Chapter,
Brussels, Belgium,
2006.
Rasa Jurgelenaite and Tom Heskes.
EM Algorithm for Symmetric Causal Independence Models.
In Johannes Fürnkranz,
Tobias Scheffer,
and Myra Spiliopoulou, editors,
Machine Learning: ECML 2006, 17th European Conference on Machine Learning, Berlin, Germany, September 18-22, 2006, Proceedings,
volume 4212 of Lecture Notes in Computer Science,
pages 234-245,
2006.
Springer.
Rasa Jurgelenaite and Tom Heskes.
Symmetric causal independence models for classification.
In Proceedings of the Third European Workshop on Probabilistic Graphical Models,
pages 163-170,
2006.
Onno Zoeter,
Alexander Ypma,
and Tom Heskes.
Deterministic and stochastic Gaussian particle smoothing.
In Proceedings of the 2006 Nonlinear Statistical Signal Processing Workshop (Cambridge, UK, September 13-15, 2006),
Piscataway, NJ,
2006.
IEEE.
Tom Heskes and Bert de Vries.
Incremental utility elicitation for adaptive personalization.
In K. Verbeeck,
K. Tuyls,
A. Nowé,
B. Manderick,
and B. Kuijpers, editors,
BNAIC 2005, Proceedings of the Seventeenth Belgium-Netherlands Conference on Artificial Intelligence,
Brussels,
pages 127-134,
2005.
Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten.
Rasa Jurgelenaite,
Peter Lucas,
and Tom Heskes.
Exploring the noisy threshold function in designing Bayesian networks.
In Max Bramer,
Frans Coenen,
and Tony Allen, editors,
Proceedings of AI-2005, the Twenty-fifth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence,
pages 133-146,
2005.
Springer.
Rasa Jurgelenaite,
Peter Lucas,
and Tom Heskes.
Use of the noisy threshold function in building Bayesian networks.
In K. Verbeeck,
K. Tuyls,
A. Nowé,
B. Manderick,
and B. Kuijpers, editors,
,
Brussels,
pages 158-165,
2005.
Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten.
Onno Zoeter and Tom Heskes.
Gaussian quadrature based expectation propagation.
In Z. Ghahramani and R. Cowell, editors,
Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics,
pages 445-452,
2005.
Society for Artificial Intelligence and Statistics.
Tom Heskes,
Onno Zoeter,
and Wim Wiegerinck.
Approximate Expectation Maximization.
In S. Thrun,
L. Saul,
and B. Schölkopf, editors,
Advances in Neural Information Processing Systems 16,
Cambridge,
pages 353-360,
2004.
MIT Press.
Alexander Ypma and Tom Heskes.
Novel approximations for inference and learning in nonlinear dynamical systems.
In 12th European Symposium on Artificial Neural Networks ESANN'04,
Brugge, Belgium,
pages 361-366,
2004.
Alexander Ypma,
Machiel Westerdijk,
Henk-Jaap de Walle,
and Tom Heskes.
Bayesian techniques for modelling dynamic patterns.
In 4th European Symposium on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems EUNITE 2004,
Aachen, Germany,
2004.
Onno Zoeter,
Alexander Ypma,
and Tom Heskes.
Improved unscented Kalman smoothing for stock volatility estimation.
In A. Bassos,
J. Principe,
J. Larsen,
T. Adali,
and S. Douglas, editors,
Proceedings of the 2004 IEEE International Workshop on Machine Learning for Signal Processing,
São Luis, Brazil,
pages 143-152,
2004.
Tom Heskes.
Stable fixed points of loopy belief propagation are minima of the Bethe free energy.
In S. Becker,
S. Thrun,
and K. Obermayer, editors,
Advances in Neural Information Processing Systems 15,
Cambridge,
pages 359-366,
2003.
MIT Press.
Tom Heskes,
Kees Albers,
and Bert Kappen.
Approximate inference and constrained optimization.
In U. Kj�rulff and C. Meek, editors,
Uncertainty in Artificial Intelligence: Proceedings of the Nineteenth Conference (UAI-2003),
San Francisco, CA,
pages 313-320,
2003.
Morgan Kaufmann Publishers.
Tom Heskes and Onno Zoeter.
Generalized belief propagation for approximate inference in hybrid Bayesian networks.
In C. Bishop and B. Frey, editors,
Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics,
2003.
Society for Artificial Intelligence and Statistics.
Note: Section 4.2 with results on discrete children with continuous children has been adapted after bug removal yielded better performance and correspondence with previous work; many apologies for any confusion.
Wim Wiegerinck and Tom Heskes.
Fractional Belief Propagation.
In S. Thrun S. Becker and K. Obermayer, editors,
Advances in Neural Information Processing Systems 15,
Cambridge, MA,
pages 438-445,
2003.
MIT Press.
Alexander Ypma and Tom Heskes.
Automatic categorization of web pages and user clustering with mixtures of hidden Markov models.
In Osmar Zaïane,
Jaideep Srivastava,
Myra Spiliopoulou,
and Brij Masand, editors,
WEBKDD 2002 - MiningWeb Data for Discovering Usage Patterns and Profiles,
volume 2703 of Lecture Notes in Artificial Intelligence,
pages 35-49,
2003.
Alexander Ypma and Tom Heskes.
Iterated extended Kalman smoothing with Expectation-Propagation.
In IEEE International Workshop on Neural Networks for Signal Processing NNSP 2003,
Toulouse, France,
pages 219-228,
2003.
Onno Zoeter and Tom Heskes.
Multi-scale Switching Linear Dynamical Systems.
In Okyay Kaynak,
Ethem Alpaydin,
Erkki Oja,
and Lei Xu, editors,
Artificial Neural Networks and Neural Information Processing � ICANN/ICONIP 2003,
volume 2714 of Lecture Notes in Computer Science,
pages 562�569,
2003.
Springer.
Bart Bakker and Tom Heskes.
Model Clustering for Neural Network Ensembles.
In ICANN '02: Proceedings of the International Conference on Artificial Neural Networks,
volume 2415 of Lecture Notes in Computer Science,
London, UK,
pages 383-388,
2002.
Springer-Verlag.
Tom Heskes and Onno Zoeter.
Expectation propagation for approximate inference in dynamic Bayesian networks.
In A. Darwiche and N. Friedman, editors,
Uncertainty in Artificial Intelligence: Proceedings of the Eighteenth Conference (UAI-2002),
San Francisco, CA,
pages 216-233,
2002.
Morgan Kaufmann Publishers.
Note: A more detailed technical report can be found here.
Tom Heskes and Onno Zoeter.
Visualization of process data with dynamic Bayesian networks.
In Proceedings of EUNITE 2002,
2002.
Wim Wiegerinck and Tom Heskes.
IPF for discrete chain factor graphs.
In Proceedings of the 18th Annual Conference on Uncertainty in Artificial Intelligence (UAI-02),
San Francisco, CA,
pages 560-56,
2002.
Morgan Kaufmann.
Bart Bakker and Tom Heskes.
Task clustering for learning to learn.
In B. Kröse,
M. de Rijke,
G. Schreiber,
and M. van Someren, editors,
BNAIC'01: Proceedings of the 13th Belgium-Netherlands Artificial Intelligence Conference,
pages 33-40,
2001.
Wim Wiegerinck and Tom Heskes.
Probability assessment with maximum entropy in Bayesian networks.
In A. Goodman and P. Smyth, editors,
Computing Science and Statistics, Volume 33 - Proceedings of Interface '01,
2001.
Note: Also presented at AIME'01, Workshop Bayesian Models In Medicine, pages 71-80.
Bart Bakker,
Bert Kappen,
and Tom Heskes.
Survival analysis: a neural-Bayesian approach.
In H. Malmgren,
M. Borga,
and L. Niklasson, editors,
Proceedings Artificial Neural Networks in Medicine and Biology (ANNIMAB-1),
pages 162-167,
2000.
Springer, Berlin.
Jakob-Vogdrup Hansen and Tom Heskes.
General bias/variance decomposition with target independent variance of error functions derived from the exponential family of distributions.
In A. Sanfeliu,
J.J. Villanueva,
M. Vanrell,
R. Alguézar,
A.K. Jain,
and J. Kittler, editors,
15th International Conference on Pattern Recognition,
volume 2,
pages 207-210,
2000.
Tom Heskes.
Empirical Bayes for learning to learn.
In P. Langley, editor,
Proceedings of the Seventeenth International Conference on Machine Learning,
San Francisco, CA,
pages 367-374,
2000.
Morgan Kaufmann.
Tom Heskes,
Jan-Joost Spanjers,
and Wim Wiegerinck.
EM algorithms for self-organizing maps.
In Proceedings of the International Joint Conference on Neural Networks,
volume 6,
Piscataway, NJ,
pages 9-14,
2000.
Wim Wiegerinck,
Bert Kappen,
Martijn Leisink,
David Barber,
Sybert Stroeve,
Tom Heskes,
and Stan Gielen.
Variational methods for approximate reasoning in graphical models.
In Proceedings of RWC'2000,
pages 265-270,
2000.
Henk van den Boogaard,
Arthur Mynett,
and Tom Heskes.
Resampling techniques for the assessment of uncertainties in parameters and predictions of calibrated models.
In Proceedings of Hydroinformatics 2000,
Cedar Rapids, Iowa, USA,
2000.
Bart Bakker and Tom Heskes.
A neural-Bayesian approach to survival analysis.
In Proceedings of ICANN99,
pages 832-837,
1999.
Bart Bakker and Tom Heskes.
Model clustering by deterministic annealing.
In M. Verleysen, editor,
Proceedings of the European Symposium on Artificial Neural Networks '99,
pages 87-92,
1999.
Tom Heskes.
Selecting weighting factors in logarithmic opinion pools.
In M. Jordan,
M. Kearns,
and S. Solla, editors,
Advances in Neural Information Processing Systems 10,
Cambridge,
pages 266-272,
1998.
MIT Press.
Tom Heskes.
Solving a huge number of similar tasks: a combination of multi-task learning and a hierarchical Bayesian approach.
In Proceedings of the International Conference on Machine Learning,
San Mateo,
pages 233-241,
1998.
Morgan Kaufmann.
Bert Kappen,
Stan Gielen,
Tom Heskes,
Wim Wiegerinck,
David Barber,
and Piërre van de Laar.
Probabilistic knowledge representation.
In Proceedings of RWC�98,
pages 285-292,
1998.
Tom Heskes.
Balancing between bagging and bumping.
In M. Mozer,
M. Jordan,
and T. Petsche, editors,
Advances in Neural Information Processing Systems 9,
Cambridge,
pages 466-472,
1997.
MIT Press.
Tom Heskes.
Practical confidence and prediction intervals.
In M. Mozer,
M. Jordan,
and T. Petsche, editors,
Advances in Neural Information Processing Systems 9,
Cambridge,
pages 176-182,
1997.
MIT Press.
Tom Heskes,
Wim Wiegerinck,
and Bert Kappen.
Practical confidence and prediction intervals for prediction tasks.
In Bert Kappen and Stan Gielen, editors,
Neural Networks: Best Practice in Europe,
pages 128-135,
1997.
World Scientific, Singapore.
Piërre van de Laar,
Stan Gielen,
and Tom Heskes.
Input selection with partial retraining.
In W. Gerstner,
A. Germond,
M. Hasler,
and J. Nicoud, editors,
Artificial Neural Networks - ICANN'97,
Berlin,
pages 469-474,
1997.
Springer.
Tom Heskes and Bert Kappen.
Self-organization and nonparametric regression.
In F. Fogelman-Soulié and P. Gallinari, editors,
Proceedings of ICANN'95/NEURONIMES'95,
volume 1,
Paris, France,
pages 81-86,
1995.
EC2 & Cie.
Tom Heskes,
Bert Kappen,
André Pastoors,
and Stan Gielen.
Confidence values for neural networks.
In Proceedings of the International Conference on Digital Signal Processing,
pages 396-401,
1995.
Tom Heskes and Wim Wiegerinck.
Presentation order and on-line learning.
In F. Fogelman-Soulié and P. Gallinari, editors,
Proceedings of ICANN'95/NEURONIMES'95,
volume 1,
Paris, France,
pages 223-228,
1995.
EC2 & Cie.
André Pastoors and Tom Heskes.
Output coding and modularity for multi-class problems.
In Bert Kappen and Stan Gielen, editors,
Proceedings of the third SNN Symposium,
Berlin,
pages 221-224,
1995.
Springer-Verlag.
Piërre van de Laar,
Tom Heskes,
and Stan Gielen.
A neural model of visual attention.
In Bert Kappen and Stan Gielen, editors,
Proceedings of the third SNN Symposium,
Berlin,
pages 111-114,
1995.
Springer-Verlag.
Tom Heskes.
Stochastics of on-line backpropagation.
In Proceedings of the European Symposium on Artificial Neural Networks '94,
pages 223-228,
1994.
Tom Heskes,
Wim Wiegerinck,
and Andrzej Komoda.
Scaling properties of on-line learning with momentum.
In Proceedings of the IEEE-IJCNN '94,
pages 508-512,
1994.
Wim Wiegerinck,
Andrzej Komoda,
and Tom Heskes.
On-line learning with momentum for nonlinear learning rules.
In M. Marinaro and G. Morasso, editors,
ICANN'94: Proceedings of the International Conference on Artificial Neural Networks, Sorrento, Italy,
volume 1,
London,
pages 775-778,
1994.
Springer-Verlag.
Tom Heskes.
Guaranteed convergence of learning rules.
In H. Kappen and C. Gielen, editors,
ICANN'93: Proceedings of the International Conference on Artificial Neural Networks, Amsterdam,
London,
pages 533-538,
1993.
Springer-Verlag.
Tom Heskes and Bert Kappen.
Error potentials for self-organization.
In International Conference on Neural Networks, San Francisco,
volume 3,
New York,
pages 1219-1223,
1993.
IEEE.
Tom Heskes and Eddy Slijpen.
Global performance of learning rules.
In I. Aleksander and J. Taylor, editors,
Artificial Neural Networks, 2,
volume 1,
Amsterdam,
pages 101-104,
1992.
North-Holland.
Bert Kappen and Tom Heskes.
Learning rules, stochastic processes, and local minima.
In I. Aleksander and J. Taylor, editors,
Artificial Neural Networks, 2,
volume 1,
Amsterdam,
pages 71-78,
1992.
North-Holland.
Tom Heskes,
Bert Kappen,
and Stan Gielen.
Neural networks learning in a changing environment.
In T. Kohonen,
K. Mäkisara,
O. Simula,
and J. Kangas, editors,
Artificial Neural Networks,
volume 1,
Amsterdam,
pages 15-20,
1991.
North-Holland.
Note: Also presented at IJCNN'91, volume 1, pages 823-828.
Adriana Birlutiu and Tom Heskes.
Bayesian machine learning for hearing aid fitting.
Technical report,
ICIS, RU Nijmegen,
2007.
Study for GN ReSound.
Marco Bloemendaal and Tom Heskes.
Predictability of noodle quality.
Technical report,
SMART Research, Nijmegen,
2004.
Study for Unilever.
Marco Bloemendaal and Tom Heskes.
Classificatie van tomatenzaden.
Technical report,
SMART Research, Nijmegen,
2003.
Study for Syngenta (in Dutch).
Alexander Ypma,
Bart Bakker,
Jan-Joost Spanjers,
and Tom Heskes.
Speedup and simplification of a multitask neural network for product sales forecasting.
Technical report,
SNN, Nijmegen,
2003.
Study for Albert Heijn.
Tom Heskes.
De voorspelbaarheid van papierstijfheid.
Technical report,
SMART Research, Nijmegen,
2002.
Study for Kappa Packaging (in Dutch).
Alexander Ypma,
Jan-Joost Spanjers,
and Tom Heskes.
Prediction of supermarket product sales with multitask neural networks.
Technical report,
SNN, Nijmegen,
2002.
Study for Albert Heijn.
Jan-Joost Spanjers and Tom Heskes.
JED prototype study Midesa/Público.
Technical report,
SMART Research, Nijmegen,
2001.
Study for Midesa/P�blico.
Jan-Joost Spanjers and Tom Heskes.
Neural networks for credit risk analysis.
Technical report,
SMART Research, Nijmegen,
2000.
Study for Simplex CA.
Wim Wiegerinck and Tom Heskes.
JED prototype study Edipresse.
Technical report,
SMART Research, Nijmegen,
2000.
Study for Edipresse.
David Barber and Tom Heskes.
Supermarket customers - understanding their appreciation.
Technical report,
SNN, Nijmegen,
1999.
Study for CBL.
Tom Heskes.
Analyse van de Freebees data.
Technical report,
SMART Research, Nijmegen,
1999.
Study for Schuitema (in Dutch).
Sybert Stroeve and Tom Heskes.
JED for the Neue Post.
Technical report,
SMART Research, Nijmegen,
1999.
Study for Bauer-Verlag.
Maurits Geuze,
Wim van de Berg,
Maarten Noort,
and Tom Heskes.
De invloed van het weer op de verkeersafwikkeling.
Technical report,
Meteo Consult Wagening and SNN, Nijmegen,
1998.
Study for Rijkswaterstaat (in Dutch).
Tom Heskes,
Bert Kappen,
Menno Mimpen,
Anno van Dijken,
and Harry Otten.
Voorspelling van frisdrankenverkoop.
Technical report,
SNN, Nijmegen and Meteo Consult, Wageningen,
1997.
Study for Riedel (in Dutch).
Piërre van de Laar and Tom Heskes.
Neural networks for resistivity tool response modelling.
Technical report,
SNN, Nijmegen,
1997.
Study for KSEPL-SIEP (Shell).
Tom Heskes,
Bert Kappen,
Anno van Dijken,
and Harry Otten.
Voorspelling van verkoop en inzet van personeel.
Technical report,
SNN, Nijmegen and Meteo Consult, Wageningen,
1996.
Study for Vendex (in Dutch).
Tom Heskes,
André Pastoors,
and Bert Kappen.
Automatisering van neurale netwerken; een direct-mailing applicatie.
Technical report,
SNN, Nijmegen,
1995.
Study for Sentient Machine Research (in Dutch).
Tom Heskes,
André Pastoors,
and Bert Kappen.
Confidence values for neural networks.
Technical report,
SNN, Nijmegen,
1995.
Study for KSEPL-SIEP (Shell).
Tom Heskes and Bert Kappen.
Neurale netwerken voor toepassingen op grote databases.
Technical report,
SNN, Nijmegen,
1994.
Study for Sentient Machine Research (in Dutch).
Tom Heskes.
Expectation Propagation,
2016.
Marina Meila and Tom Heskes.
Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam, The Netherlands,
2015.
Antal van den Bosch,
Tom Heskes,
and David van Leeuwen.
Proceedings of Benelearn,
2013.
Tjeerd Dijkstra,
Evgeni Tsivtsivadze,
Elena Marchiori,
and Tom Heskes.
Pattern Recognition in Bioinformatics, Proceedings of the 5th IAPR International Conference,
2010.
Tom Heskes.
Computers met Hersenen (inaugural speech, in Dutch),
2009.
Bert Kappen and Tom Heskes.
Method, system and computer program for computing one marginal probability for an observed phenomenom.
Note: European Patent WO2004049191,
2004.
Tom Heskes,
Peter Lucas,
Louis Vuurpijl,
and Wim Wiegerinck.
Proceedings of the 15th Belgium-Netherlands Conference on Artificial Intelligence,
2003.
Bert Kappen and Tom Heskes.
Predicting newspaper sales: JED system 'weathers' the test,
2000.
Note: IFRA Magazine, May, pages 58-59.
Tom Heskes,
Bert Kappen,
and Marcellino Groothof.
Just Enough Delivery,
1998.
Note: INMA Ideas Magazine.
Tom Heskes and Bert Kappen.
Neural network system, JED, offers solution for predicting single-copy sales,
1997.
Wim Wiegerinck and Tom Heskes.
Neurale netwerken, de techniek van wakker Nederland,
1997.
Note: PolyTechnisch tijdschrift (in Dutch).
Tom Heskes.
Learning processes in neural networks (PhD thesis),
1993.